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MULTIPLE CAPTURE IN PONTRYAGIN’S EXAMPLE
WITH PHASE CONSTRAINTS}

N. N. PETROV

Izhevsk
(Received 20 February 1996)

Sufficient conditions for m-fold capture in Pontryagin’s example [1] with many participants and with phase constraints on the
state of the evader for identical dynamic and inertia possibilities of the players are derived. The phase constraint boundary here
is not the “death line” for the evader. © 1998 Elsevier Science Ltd. All rights reserved.

This paper is related to the investigations described in [2-11].

1. STATEMENT OF THE PROBLEM

In the space R¥ (k = 2), we consider an n + 1-person differential game I': n pursuers Py, ..., P, and
an evader E with laws of motion

P +ax Ve vax,=u, uweV (1.1)
YW +ay' P+  +ay=v, veV (1.2)

Here x;, y,u;, ve R, ay,...,a,€ R and Vis a convex compact set of R¥. The initial conditions at ¢ =
0 are

xM0)=x%, Y90)=y2, a=0,..,1-1 (1.3)

where x% — y% & M; for all i and M; are convex compact sets of R¥. Here and everywhere below
i=1,...,n. Itis also assumed that the evader E does not leave the convex set

D={y: yERk!(pj9y)suj’ j=1,...,r}
where py, . . ., p, are unit vectors of R* and |, . . ., J, are real numbers such that Int D # 0.

Definition 1. We shall say that m-fold capture occurs in the game T if there are the following: a
time T > 0 and measurable functions u,(f) = u(t, x%, ¥%, v()) € V and for any measurable function
v(t), v(®) € V, y(t) € F, t € [0 T] there are times 1, . . . , 1,, € [0, 7] and pairwise different indices
i, ... ime {1,...,n} such that x;(ty) — ¥(T,) € Mjg foralla=1,...,m.

It is assumed that n = m.

2. AUXILIARY ASSERTIONS

Lemma 1. Suppose the function

g = il exp(A ;)P (1) + f‘, exp(ot)(Qy () cos Vot + Ry (2)sin v 1)
J= o

=1
(AjoBasVo € R Ay <Ay <<hy, Sy S . sp)

where A; are pairwise different and P;, O, Ry are polynomials, is such that g(f) = 0 for all ¢t = 0 and
git)=0.
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Then

tg = ks, then deg O,(2) < deg P(¢), deg Ry, (t) < deg Pt), forall p € I = {p: p, = A}.
Instead of systems (1.1) and (1.2) we will cons1der the system

P +al ™+ raz=u-v, u,veV (21)
z;(0)= Z;o = X0 = Y05 24 0) = 2y = Xy ~ Y.
We will denote by ¢,(f) (p =0, 1, ..., [~ 1) solutions of the equation
wh 4 aw! Ve +aw=0
with initial conditions
w(0)=0,...,wP(0)=0, wP@©0)=1, wr*P(0)=0,..,w!'P©0)=0
Assumption 1. All the roots of the characteristic equation
NeaN'+.. +a,=0 (2.2)
have non-positive real parts.
Assumption 2. The inequality ¢,_1(t) = 0 holds for all ¢ = 0.
Note that Assumption 2 is satisfied if Eq. (2.2) has only real roots.
Assumption 2 and Lemma 1 imply that Eq. (2.2) has at least one real root Let A, . . ., A
M < , < A;) denote the real roots, [y + ivy, ..., My £ iV, (y S Wy < p,) the complex

roots of Eq (2.2), k; the multiplicity of A; and m, the multlphclty of the root g g ivy. By the
Assumption 2, j4i, < ?» Further, let

()= @o(1)z0h + ¢ (D20 + ... @, (2],
n() = Po(1)yg + 9, (¥} ... 0 (DY,

Then @.1(t), &:(¢), n(f) can be represented in the form

(pl—l (t) = il exp(lj:)Pl—l](t) + i' exp(uut)(QI_la(t)COS Vat + R,_]a(t)sin Vat)
j= a=
&)= i‘lexp(l PO+ )"_“ eXp(Hat X QL (1) €08 V1 + Rl ()sin V)
l= o=
ne = f‘, exp(A ,-t)Pf )+ }’_L, exp(ot Q2 (1) cos vt + RE(1)sin v, 1)
j:‘ =]

We will assume that (¢) & M; for all i and ¢ > 0, for if £,(t) € M, for some o and ¢, the pursuer P, will
catch the evader E, assummg ua(t) v(t), and we can then cons1der the problem of (m — 1)-fold capture.
We also assume that Ps,(t) # 0 for all i, for otherwise the pursuers initially endeavour to satisfy the
given condition.

Let y; denote the degree of the polynomial P(f), yo the degree of the polynomial PX(f) and ythe degree
of the polynomial Py ;(¢). It can be assumed that y; = yfor all i, for otherwise pursuers P initially strive
to satisfy the given condition.

Lemma?2.y=k;- 1.
Assumption 3. my < k;forallae I = {o| ug = A}

Lemma 3. Suppose that Assumptions 1-3 are satisfied. Then for any T > 0, there are a constant
¢ > 0 and a function R(¢), lim,_, ., R(¢) = 0 such that
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T
Jor1t—t)dt=cexpA Y1+ R(t)) (>T)
0

Lemma 4. Assumptions 1-3 are satisfied.
1. Let A, < 0. Then there is a constant a > 0 for which

t
lim [ ¢, ,(t-T)dT=a VT>0
t—poo T
2. Let A, = 0. Then for any T > 0 there are the following: a constant ¢; > 0 and a function Ry(?),
lim,_, .. Ry(#) = 0 for which

T
Joit=vdt=ct" 1+ R (1))
0

We now define the function A: comp(RF) x ¥V — R
AA,v)=sup{A| A= 0,~AAN(V-v)=0)

Here comp(R*) is the space of convex compact subsets of R* with a Hausdorff metric. Suppose further
that

z?=’li’n°1°ﬂ',-/t7, I={n+1,..,n+r}
d=max{|jv |, v eV}
b=:{—~1/a, if a,<0 M!={z?—Mi, if A, =0, k =1
0, if a,=0" 7' |20 otherwise
Q={{if,....0,}: i, iz < {L....n} ify.onsiy differ pairwise}
Aj@)=(pjpv)+bu;,, jel, §i(1)=exp(-A1E;(1)

S = ;25 max{r}\lgg 21512 Ay (Ag. V), njlglx A@)}

e . 1 .
8 = inf max{max mind, (M,,v), max A

b - - [y
Vi=fp:v eV, max Lnellt\lka(Ma,u) 0}

Lemma 5. Let A, . .., A, be convex compact sets such that 0 & A;, 8 > 0 and let the functions A(A4;,
) be continuous at all points (4;, v), where A,(4;, v) > 0. Then for any continuous multivalued mappings
B{(t) : [0, o) — comp(R¥) for which lim, _, «Bi(t) = A; (in a Hausdorff metric), there is a time T, for which

3(t) = inf max{max min A, (B, (#),v), max A= Vi>T,
veV AeQl aeA jel

2
Assumption 4. The condition 0 &€ M} holds and the functions A; are continuous at all points
(M3, v) for which A, (M3, v) > 0.

3. SUFFICIENT CONDITIONS FOR CAPTURE

Lemma 6. Suppose that for some game I" Assumptions 1-4 hold and A, < 0,0e D, 8, > 0,7 = 1.
Then there is a time T > 0 such that for any admissible function v(-), there is a set A € Q for which

T
1-exp(-A,T,) f Q1_1(Ty — DA, (§:,(7},), v(t)dt<0 VaeA
0

Proof. Let T be any number and let v(t), ¢ € [0, T] be an admissible function (that is, y(f) € D for all ¢ € [0, T]).
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We will define the continuous functions

’ v f ' ‘
h;(£)=1-exp(-At) j Q1 —-DAEND), v (1)d1, K(0)=1 : 3.1
Y, max hy (T) < C}' —exp(-A,T) j 1 (T- ‘l:)max mlnk 2 EL(D), v (1)
Aefl R€A

Since EL(T)/T" — 2% as t — oo, by virtue of Lemma 5 and Assumption 4, there is a time T for which

§g ) 5
19f max{m Lnelx kq( y U A= > V> T,

Since y(t) € D we have (p;, y(£)) < ;. The last inequality is equivalent to the following

I Q-1 (1= 1)y, v (AT W) = —(p; (D) +4; - f 011t -1)(py v (R))d7
n

We will define the two sets Ay(t), Ay(f) C [Ty, £], (¢ > T) as follows:
A ={tl T[T} (pr, v (%) <8- b, =8§,)
Az(‘)= {1' TE[Ti 1']! (p]v U(T)); 8]’
Then
G +Gy = f(t), ~dG,+8,G, <p(r)

where

'
Ga= [ @ (t-0d1, f(t)=[g, (t-T)d1
A2 5

It follows from the last two relations that

G =3,/ ()~ W)/ (d+8;) (3.2)
Assuming that T > T, from inequality (3.1) we obtain
p maxha(T)< Cr —exp(~A,T) | @;_(T-t)max min Ay (EL(T),v (1))d (3.3)
AeQ €A A(T) AeQ aeA

Since A(EY(T), v)TY = MLEUTNT, v)

max mm A BL(D), v ()= —l-— max min xa(é.;‘(T)

AeQa AeQaeA

()} >3 viean (3.4)

Thus from (3.3), taking account of (3.4) and (3.2), we obtain
m _ SXp(=A T)B8, £(T) - w(T)]

n=C T
o aip e D TV (d+3;) =&M
From the relation
exp(-A,T)INT) _ PX(T) ¢ ,2(T)

2
+ ﬁ exp((ho —A)T) McosvaT+ Re (1) sinv,T
a=l il Y

the condition ¥, < yand Assumption 3, we see that the quantity || exp (<A, Tn(T)/T"|| is bounded in [T}, ). Thus
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the quantity || exp (-A;7)(p1, n(T))/T"|| will also be bounded in [T}, ). It follows from Lemma 3 that the quantity

exp(-A.T)

7 f(p 1(T-1)dt

is bounded in [T}, «). From Lemma 4 it follows that
G f(O-1)=@-bpf()-py 2ad as t—ree
Thus lim g(T) = —c as ¢t — 0. This means that there is a time T, which satisfies the condition of the lemma.
Let
V)=, v(t)eV, y(t)eD, t1€[0,1]},

= i = ;v d >1
T(zy) mm{t.t>0 Al)téﬁ(f)t;\:ég\émjexp( -A Q. (t-1) (§a(t) v(1))dt }

Theorem 1. Suppose that for the game I' Assumptions 1-4 are satisfied, A, < 0,3y > 0,0e D, M; =
{0} and at least one of the following two conditions holds

@r=1; (b) nﬁn‘,m?X((Pj,v)+bu,-)>0
vV ECON

Then the game T involves m-fold capture.

Proof. Suppose condition a holds. By Lemma 6 we have T = T(zy) < e Let v(t) (0 < 1 < T = T(z))
be any admissible control of the evader E. There is a time T, € (0, T] which is a root of the function

ht)=1- 111\1:3 glelll\l H,(1)
t

(Hy (1) = exp(=A,T) [ @;_1(T — g (g (T), v (7))d)
0

and also a set Ag € Q2 such that 1 — Hy(T;) < 0 for all & € Ag. Thus, there are timest, < Ty, a.e Ag
such that .
1-Hy(1,)=0 (3.5)

For i & Ay we denote times for which Eq. (3.5) holds and t; < T by ¢,
We will fix the controls of pursuers P;, putting

u, (1) =v (£) = M ENT), v ()ENT), ¢ [0, mins;, T}
u;(t)=v(t), te(min{t,T},T]
Then for all a € A
T
exp(—A Tz (T) = B4 (T) + exp(=A,T) | @,y (T - Dt (1) -v (1))dT =
0

=& (T)X1- Hy ()

From (3.5) we find that exp(—A;T)z(T) = 0 for all o € A. It follows that z,(7) = 0 for all o € Ay,
and the theorem is proved in the case when r = 1.

Now suppose that condition b of the theorem is satisfied. Then by the theorem of Bohnenblust ef al.
[12] there are numbers y; =0, v, + ... + ¥, = 1 such that

,inf_ 3 Yi(pjv)+bp;)>0

oW j=1
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Puttingp=vp1 + ... +¥Wub=mlh + ...+ W, D ={y:ye R",(p,y)sp,},wehave

inf max{max min la(zg, v), (p,v )+b|.1} >0
Aef) aeA

vev

Thus, the problem of m-fold capture with phase constraints D, is solvable. Since D C D,, the original
problem on m-fold capture will also be solvable. This proves the theorem.

Corollary. Suppose that for the game I Assumptions 1-3 hold, A, < 0, V' =D;(0), ; =0,j =1,...,
rrn=m+k-1and

OEInt n co{ U Z?;p]v---'pr} (3.6)
i€eA(n-m+1)

A(n-m+1)

Then m-fold capture occuss in the game T".

Lemma 7. Suppose that for the game I' Assumptions 1-4 are satisfied, A, = 0, 8y > 0,7 = 1.
Then there is a time Ty such that, for each admissible function v(f), there is a set A € Q for

which
%
1- f Q1 1(To - A (Eo(Ty)- M, v(T)dT<0 VoeA
0

The proof is similar to that of Lemma 6.

Theorem 2. Suppose that for the game I" Assumptions 14 hold, A; = 0, 8¢ > 0, and at least one of
the following two conditions holds

(@r=1 (b) minv_imax(pj,v)>0
vV €co J

Then m-fold capture occurs in the game I".
The proof is similar to that of Theorem 1.

Corollary. Suppose that for the game I'" Assumptions 1-3 hold, A; = 0, M; = {0}, ¥V = D;(0), n =
k + m - 1 and either condition (3.6) holds or D is a polytope.
Then in the game I" m-fold capture occurs.

4. EXAMPLES
1. The laws of motion of the pursuers P; and the evader E have the form
X; +ax; = u;, x,-(0)=x,9. u; eV, a>0
y+ay=v, yO0)=y3, veV
Let M; = {0}, 0 € D. In that case
2 =xl -3, b=-a, @o(t)=exp(-ar)

Mz, )=z, )+, v I L R A=l B2 P

§=mi inA; (20, v), L v)—alL;
n:mmax{xxeasl;renxn iz v) r;xea;(((p] v) an,)}

Assertion 1. Let 8 > 0 and suppose that at least one of the following conditions holds
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(@) r=1; (b) min_max((pj,v)-an;)>0
vecol
Then m-fold capture occurs in the game I'.

Assertion 2. Let V = D,(0), W= 0,j=1,...,r,n =k + m—1 and suppose that condition (3.6) holds.
Then m-fold capture occurs in the game I'.
2. Systems (1.1) and (1.2) have the form

V22D 45 =w, li <1

5(0=x%, 50=13. HO=x5, PO =2} @41
y® +2y® 15=u, ful=t

Y0 =33, (0 =3, #0)=)3, Y’ (@)=}

In that case

2‘1 =-1, kl =2, kz =0, k2 =2, (po(t)-_-l, vl(t)=‘
@, (=G +0)exp(-1)+(2-3), @3(t)=(2+1)exp(-1)+-2

We put

0 0

o 0 z?, +22,92 +z?3. z?l +22.?2 +z,93 +#0
Zig=Xig=Yqr U =

-3z -22%,  zf+2eh+2l=0
We assume that 20 = 0.

Assertion. Letn = k + m — 1, M; = {0} and suppose that condition (3.6) holds.

Then m-fold capture occurs in the game I'.

3. The form of systems (1.1) and (1.2) differs from (4.1) in the absence of the second term on the left-hand sides
of the equations of mation of pursuers and evader. In that case

kl =0, kl =2, Vi =i, my =1, (po(l)=l, Ql(f)=f
@2(t)=1-cost, @3(t)=1-sin?

Putting z‘,’-q = x?q - yf',, we have

Ei(0)= 9o (D)2 + 91 (D)2 + 92 ()2l + @312y =

= (2% +2%)+2(z8 +28)— (2% cost + 2 sinp)
Letzd=2% + 2% 0,M; = {0
tzl—zll+zl3$ a 1_{}-

Assertion. Let n = k + m — 1 and suppose that condition (3.6) holds.
Then m-fold capture occurs in the game I.
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